Pengelompokan Pelanggan Pdam Berdasarkan Penggunaan Air Oleh Konsumen Menggunakan Algoritma K-Medoids
DOI:
https://doi.org/10.54066/jikma.v1i5.847Keywords:
Segmentation, Customer, Water Usage, K-MedoidsAbstract
The Regional Water Company (PERUMDA) Tirta Hidayah in Bengkulu City is a regional company engaged in providing clean water distribution services to the community. The problem addressed in this research is the difficulty of the company in meeting the water needs of its customers due to the lack of accurate and periodic data on water usage by customers, resulting in a lack of reference for the provision of clean water supply each month regarding the excess or shortage of water usage and the areas that use a lot or a little of clean water. This research aims to segment PDAM customers based on consumer water usage using the k-medoids algorithm. Customer water usage data from January to December 2022 were obtained from PDAM. Segmentation was performed using the k-medoids algorithm with Euclidean distance as the metric. The results of this research include the development of a system that can segment water usage of customers into wasteful and normal categories using the k-medoids method. The collected customer data can be segmented into several groups based on the same water usage patterns. The k-medoids algorithm can help segment customers into several clusters or groups with the same characteristics in terms of water usage.
References
Ari, Rosihan. Basic PHP Tutorial. RasihanAri.Net, 2018.
Br. Barus, Riahta Ulina. Pengelompokan Data Penjualan Mie Berdasarakan Bulan Dengan Menggunakan Algoritma K-Medoids. No. 2, 2021, pp. 141-156.
Defiyanti, Sofi, and Mohamad Jajuli. Optimalisasi K - Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion. no. 01, 2017, pp. 211–18.
Deny Jollyta, William Ramdhan, Muhammad Zarlis. Konsep Data Mining. CV Budi Utama, 2020.
Farissa, Riva A. “Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pengelompokan Data Obat dengan Silhouette Conffient”. Jurnal AIC, Vol. 5, 2021, pp. 1-8.
Han, Jiawei. Konsep Dan Teknik Data Mining. Andi, 2014.
Hendoko, Koko. “Penerapan Data Mining Dalam Meningkatkan Mutu Pembelajaran Pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering.” Jurnal Teknologi Informasi, vol. 2, 2016, pp. 1–10.
Kadir, Abdul. Belajar Database Menggunakan MySQL. Andi, 2015.
Mochamad Wahyudi, Masitha, Rinsa Saragih, Solikhun. Data Mining. Yayasan Kita Menulis, 2020.
Pramesti, Dyang Falila, et al. Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ). no. 9, 2017, pp. 723–32.
Raharjo, Budi. Kursus Mandiri PHP 8. Penerbot INFORMATIKA, 2021.
Sani Susanto, Dedy Suryadi. Pengatar Data Mining. C.V. Andi, 2010.
Sindi, Sukma, et al. Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia. no. 1, 2020, pp. 166–73.
Siska, Sri Tria. Analisa Dan Penerapan Data Mining Untuk Menentukan Kubikasi Air Terjual Berdasarkan Pengelompokan Pelanggan Menggunakan Algoritma K-Means Clustering. No. 1, 2016, Pp. 86–93.
Solikin, Imam. Sistem Informasi Pendataan Pengunjung Perpustakaan (Studi Kasus : SMKN 1 PALEMBANG) 1, 2, 3. no. 03, pp. 140–51.
Yakub. Pengantar Sistem Informasi. Graha Ilmu, 2012.
Yuliano, Triwansyah. “Pengenalan PHP.” IlmuKomputer.Com, 2012, pp. 1–10.