Implementasi Data Mining FP-Growth Untuk Analisis Pola Pembelian Pada Transaksi Penjualan

Authors

  • Siti Komariyah STMIK IKMI Cirebon
  • Saeful Anwar STMIK IKMI Cirebon
  • Bani Nurhakim STMIK IKMI Cirebon

DOI:

https://doi.org/10.54066/jmbe-itb.v1i2.128

Keywords:

Frequent Pattern Growth, Association Rule, Data Mining, Business Strategy, RapidMiner

Abstract

In the business world, efforts are needed as much as possible in gaining profits. The accuracy of marketing strategies can be seen from the consumer spending pattern database obtained from sales transactions on fashion products that are usually purchased simultaneously by customers. Information about the Pattern of Purchasing Customer Shopping that is Inaccurate at the Ayu Collection Online Shop Shop has caused promotional policy to be one of the causes of the store to suffer losses. One way to get an accurate customer shopping pattern is to use data mining. One of the methods contained in data mining is the association analysis method, in the association analysis there are several algorithms, one of which is the FP-Growth algorithm. In this study several association rules were found by applying the Frequent Pattern (FP-Growth) algorithm from the transaction database Fashion sales at Ayu Collection Online Shop. This association rules will later be used as decision making material to develop successful marketing and sales strategies. The findings of this study are in the form of product recommendations, namely the proposal of two or more items based on the findings of the FP-Growth algorithm using a 50% confidence value and a minimum support of 40%, this study uses assistance from the rapidminer tools version 9.9.

References

I. Musdalifah and A. Jananto, ―Analisis Perbandingan Algoritma AprioriDan FP- GrowthDalam PembentukanPola AsosiasiKeranjang BelanjaPelanggan,‖ 2022.

S. Susanto and D. Suryani, ―Pengantar Data Mining Menggali Pengetahuan Dari Bongkahan Data,‖ Buku, pp. 1–3, 2010.

N. Ratna, S. Purba, and F. Riandari, ―Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Analisis Keranjang Belanja Transaksi Penjualan Pada PT Madu Kembang Joyo,‖ J. Nas. Komputasi dan Teknol. Inf., vol. 4, no. 1, 2021.

S. Z. dan N. A. Harahap, ―Teknik Data Mining Untuk Penentuan Paket Hemat Sembako,‖ vol. 7, no. 3, pp. 111–119, 2019.

I. P. Lestari, A. B. Santoso, and S. Informasi,

―RANCANG BANGUN SISTEM INFORMASI LAYANAN TAGIHAN PELANGGAN KORAN PADA RADAR LAMPUNG,‖ 2022.

A. Ardianto and D. Fitrianah, ―Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV . Fajar Sukses Abadi,‖ 2019, doi: 10.22441/incomtech.v9i1.3263.

Y. D. Lestari, ―PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA FP-TREE DAN FP-GROWTH PADA DATA TRANSAKSI PENJUALAN OBAT,‖ 2015.

I. Astrina Í ½í3 §, M. Z. Arifin, and U. Pujianto,

―Penerapan Algoritma FP-Growth Dalam Penentuan Pola Pembelian Konsumen Pada Kain Tenun Medali Mas,‖ 2019.

A. Junaidi, ―Implementasi Algoritma Apriori dan FP-Growth Untuk Menentukan Persediaan Barang,‖ vol. 08, pp. 61–67, 2019.

M. Rizq Daffa Jodi, ―Fakultas komputer Algoritma dan Struktur data,‖ 2020.

S. Genjang Setyorini, J. Adhiva, S. Ayunda Putri,

U. Islam Negeri Sultan Syarif Kasim Riau, and P. Studi Sistem Informasi Fakultas Sains dan Teknologi, ―Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen,‖ 2020.

R. Amelia and D. P. Utomo, ―ANALISA POLA PEMESANAN PRODUK MODERN TRADE INDEPENDENT DENGAN MENEREPAKAN ALGORITMA FP. GROWTH (STUDI KASUS: PT. ADAM DANI LESTARI),‖ KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, Nov. 2019, doi:

30865/komik.v3i1.1622.

M. Abu Jihad Plaza R, ―PEMANFAATAN METODE TECHNIQUE FOR ORDER PREFERENCE BYSIMILIARITY TO IDEAL SOLUTION(TOPSIS) UNTUK MENENTUKAN PELANGGAN TERBAIK,‖ 2019.

R. Nofitri and N. Irawati, ―ANALISIS DATA HASIL KEUNTUNGAN MENGGUNAKAN

SOFTWARE RAPIDMINER,‖ vol. 5, no. 2, pp. 199–204, Jul. 2019, doi:

33330/jurteksi.v5i2.365.

M. Lucky, N. R. Stie, and K. Bandung, ―Penerapan Strategi Bisnis di Masa Pandemi Covid-19,‖ 2021.

Downloads

Published

2023-03-13

How to Cite

Komariyah, S., Saeful Anwar, & Bani Nurhakim. (2023). Implementasi Data Mining FP-Growth Untuk Analisis Pola Pembelian Pada Transaksi Penjualan. JURNAL MANAJEMEN DAN BISNIS EKONOMI, 1(2), 62–75. https://doi.org/10.54066/jmbe-itb.v1i2.128