Analisis Sentimen Pada Media Sosial Instagram Terhadap Akun Presiden Joko Widodo Menggunakan Metode Naïve Bayes Classifier
DOI:
https://doi.org/10.54066/jptis.v2i2.1895Keywords:
Accuracy, Instagram, Jokowi, Naïve Bayes Classifier, Sentiment AnalysisAbstract
In the growing digital era, social media, especially Instagram, has become the main platform for people to communicate and express themselves. One of the most influential accounts is President Joko Widodo's official account, @jokowi, which is often in the spotlight with thousands of comments covering a wide range of sentiments, both positive and negative. In the midst of his popularity, sentiment analysis is key to understanding the public's views on Jokowi's leadership. This study aims to analyze public sentiment towards President Joko Widodo (Jokowi) through comments posted on his official Instagram account (@jokowi). By utilizing the Naïve Bayes Classifier method, this study collected data from 1000 comments which were then processed through various stages of the methodology, including data collection, preprocessing, weighting, k-fold cross validation, and method implementation. Through the preprocessing stage involving cleansing, stopword removal, stemming, and tokenizing, the comments were prepared for further analysis. Test results using k-fold cross validation show that the model has an average accuracy of 80.3%. In addition, evaluation using confusion matrix showed an accuracy of 84.1%, with a precision of 85.5% and recall of 92.4%. These results show that the Naïve Bayes Classifier method performs well in classifying positive and negative sentiments in the comments.
References
Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640. https://doi.org/10.30865/mib.v5i2.2937
Firdaus, A., & Firdaus, W. I. (2021). Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan). 13(1), 66–78.
Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Jakarta Menggunakan Algoritma SVM Media sosial menjadikan masyarakat mengalami pergeseran perilaku baik budaya , etika dan norma yang ada , sehingga mereka dapat mengeluarkan opini - opini yang mereka miliki . Opini merupakan suatu pendapat dari pemikiran. 2(1), 31–37.
Maulidina, M. K. (2020). Analisis Sentimen Komentar Warganet Terhadap Postingan Instagram Menggunakan Metode.
Nisa, A. L. F. (2023). Optimizing Arabic Language Proficiency Through Instagram Social. 01(03), 115–124. https://doi.org/10.18860/kitaba.v1i3.23415
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), 5(2), 697–711.
Rusdiaman, D., & Rosiyadi, D. (2019). Metode Naïve Bayes Classifier Dan Support Vector Machine. 4(2), 230–235.
Sari, H., Ginting, G. L., Zebua, T., & Mesran. (2021). Penerapan Algoritma Text Mining dan TF-IDF untuk Pengelompokan Topik Skripsi pada Aplikasi Repository STMIK Budi Darma. TIN: Terapan Informatika Nusantara, 2(7), 414–432.
Tempola, F., Muhammad, M., & Khairan, A. (2018). Perbandingan Klasifikasi Antara Knn Dan Naive Bayes Pada Penentuan Status Gunung Berapi Dengan K-Fold Cross Validation Comparison of Classification Between Knn and Naive Bayes At the Determination of the Volcanic Status With K-Fold Cross Validation. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 5(5), 577–584. https://doi.org/10.25126/jtiik20185983
Thoyyibah, Kurniawan, F., & Taryo, T. (2024). Dasar - dasar Machine Learning Pada Google Colabs. Eureka Media Aksara.
Watratan, A. F., Puspita, A., & Moeis, D. (2020). Journal Of Applied Computer Science And Technology ( JACOST ) Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. 1(1), 7–14.
Widayat, W. (2021). Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning. 5(2014), 1018–1026. https://doi.org/10.30865/mib.v5i3.3111
Widowati, T. T., & Sadikin, M. (2021). Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 11(2), 626–636. https://doi.org/10.24176/simet.v11i2.4568
Zhafira, D. F., Rahayudi, B., & Indriati. (2021). Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube. Jurnal Sistem Informasi, Teknologi Informasi, Dan Edukasi Sistem Informasi, 2(1), 55–63. https://doi.org/10.25126/justsi.v2i1.24