Klasifikasi Malware Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Website
DOI:
https://doi.org/10.54066/jptis.v2i2.1931Keywords:
Malware, Convolutional Neural Network (CNN), IoT23 dataset, web-based malware detection, deep learningAbstract
This study aims to develop a web-based malware detection system using Convolutional Neural Network (CNN) utilizing the IoT23 dataset. Malware is malicious software that can exploit security vulnerabilities in computer systems, steal data, and degrade performance. The implementation of this detection system involves CNN, capable of extracting important features from both visual and textual data, applied to malware classification. The IoT23 dataset comprises 23 scenarios of IoT network traffic, including traffic from malware-infected devices. The study results show that the developed web application can detect malware attacks with accuracy, precision, recall, and F1-score of 99% on separate data scenarios. This CNN-based detection system has proven effective in identifying and classifying malware attacks, contributing to the enhancement of network and device security.
References
Adenansi, R., & Novarina, L. A. (2017). MALWARE DYNAMIC.
Adiputra, O., & Setiawan, E. (2023). Klasifikasi Malicious URL Menggunakan Algoritma Improved Random Forest dan Random Forest Berbasis Web. Jurnal Sains dan Informatika, 9(1), 8–14. https://doi.org/10.22216/jsi.v9i1.1378
Akhtar, M. S., & Feng, T. (2022). Malware Analysis and Detection Using Machine Learning Algorithms. Symmetry, 14(11). https://doi.org/10.3390/sym14112304
Azzahra Nasution, D., Khotimah, H. H., & Chamidah, N. (2019). PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN (Vol. 4, Nomor 1).
Damanik, R. A., Seta, H. B., & Theresiawati. (2023). ANALISIS TROJAN DAN SPYWARE MENGGUNAKAN METODE HYBRID ANALYSIS.
Garcia, S., Parmisano, A., & Erquiaga, M. J. (2020). IoT-23: A labeled dataset with malicious and benign IoT network traffic.
Hamdi, F. S., & Maita, I. (2022). Pelatihan Pembuatan Website Memanfaatkan Wix Untuk Blog Pribadi Pada Siswa SMAN 2 Gunung Talang. CONSEN: Indonesian Journal of Community Services and Engagement, 2(2), 64–69. https://doi.org/10.57152/consen.v2i2.471
Hananta Firdaus, D., Imran, B., Darmawan Bakti, L., & Suryadi, E. (2022). KLASIFIKASI PENYAKIT KATARAK PADA MATA MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) BERBASIS WEB. Dalam Jurnal Kecerdasan Buatan dan Teknologi Informasi (JKBTI) (Vol. 1, Nomor 3).
Hartono, B. (2023). Ransomware: Memahami Ancaman Keamanan Digital. Bincang Sains dan Teknologi, 2(02), 55–62. https://doi.org/10.56741/bst.v2i02.353
Kusumaningrum, T. F. (2018). IMPLEMENTASI CONVOLUTION NEURAL NETWORK (CNN) UNTUK KLASIFIKASI JAMUR KONSUMSI DI INDONESIA MENGGUNAKAN KERAS.
Lee, H., & Song, J. (2019). Introduction to convolutional neural network using Keras; An understanding from a statistician. Communications for Statistical Applications and Methods, 26(6), 591–610. https://doi.org/10.29220/CSAM.2019.26.6.591
Liang, Y., & Vankayalapati, N. (2021). Machine Learning and Deep Learning Methods for Better Anomaly Detection in IoT-23 Dataset Cybersecurity.
Libovický, J. (2017). Deep Learning for Natural Language processing Introduction to Natural Language Processing.
Mahdi, F. A., Lukito, C. A., Parwita, D., Nofri, A., Madjid, V. A., & Prasvita, D. S. (2021). Pengaruh Principal Component Analysis terhadap Akurasi Model Machine Learning dengan Algoritma Artificial Neural Network untuk Prediksi Kebangkrutan Perusahaan. Dalam Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia.
Nurfauzi, N. A. (2022). DETEKSI SERANGAN MALWARE PADA CLOUD SERVER MENGGUNAKAN METODE ANOMALY BASED.
Putra, J. W. G. (2020). Pengenalan Pembelajaran Mesin dan Deep Learning. 150–151.
Python. (2021). Python FLask.
Rangga, M., Nasution, A., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. JURNAL INFORMATIKA, 6(2), 212–218. http://ejournal.bsi.ac.id/ejurnal/index.php/ji
Rizki, M., Basuki, S., & Azhar, Y. (2020). Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory Untuk Prediksi Curah Hujan Kota Malang. REPOSITOR, 2(3), 331–338.
Sahu, A. K., Sharma, S., Tanveer, M., & Raja, R. (2021). Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146–154. https://doi.org/10.1016/j.comcom.2021.05.024
Silviana, Kurniawan, R., Nazir, A., Budianita, E., Syarifa, F., & Gusti, K. S. (2022). PENGKLASTERAN RISIKO COVID-19 DI RIAU MENGGUNAKAN TEKNIK ONE HOT ENCODING DAN ALGORITMA K-MEANS CLUSTERING.
Stoian, N.-A. (2020). Machine Learning for Anomaly Detection in IoT networks: Malware analysis on the IoT-23 Data set.
Suprayogi, C., & Marwan, M. A. (2022). Classification of Network Traffic Data Mirai Malware Attacks on Internet of Things Devices Using the K-Nearest Neighbor Method. International Research Journal of Advanced Engineering and Science, 7(4), 39–43.