Pengelompokan Data Keluhan Masyarakat Terhadap Fasilitas Umum diKota Binjai Menggunakan Metode Clustering

Authors

  • Dea Syafitri STMIK Kaputama
  • Yani Maulita STMIK Kaputama
  • Lina Arlianan Nur Kadim STMIK Kaputama

DOI:

https://doi.org/10.54066/jptis.v2i3.2381

Keywords:

Data Mining, Public Facilities, Complaints, K-Means Algorithm

Abstract

Public Facilities in Binjai City are infrastructure that is provided free of charge that can be enjoyed by the community and is one of the vacation spots that does not need to spend a lot of money, but there are several infrastructure facilities that are not maintained, dirty and have damage from minor to the most severe, even infrastructure, so that it greatly affects the comfort of the community. In the process of maintaining public facilities in Binjai City in accordance with the Binjai City Regional Regulation Letter Number 1 of 2024 concerning public facilities used for public purposes, including for educational, health, worship, socio-cultural, sports and recreational activities (Hamzah, 2024). The Environmental Service of Binjai City really needs input from the community to continue to help maintain and care for the facilities provided so that the agency can handle and respond to community complaints such as a lot of garbage, dirty, rusty, muddy facilities and others as well as input reported by the community on the cleanliness of public facilities in Binjai City. Therefore, the agency needs a system using the clustering method that can manage community complaint data to be used as information that can assist the agency in taking quick action to deal with the problem of community complaints about public facilities in Binjai City. Based on the research conducted on the case experiment above from testing 20 data, there are 3 groups, namely group 1 there are 5 data and group 2 there are 9 data, and group 3 there are 6 data which can be known that in cluster 2 the group of public complaints about public facilities in Binjai City with public facilities (X) Studion Field, with complaints (Y) Becek, Banyak Sampah, & Berkarat, with Advice (Z) Repair & Maintain Cleanliness.

References

Abdulsyani,. (2022). Sosial Keluarga. Jakarta : Bumi Aksara

Annisa, K., Serasi Ginting, B., & Syari, M. A. (2022). Penerapan Data Mining Pengelompokan Data Pengguna Air Bersih Berdasarkan Keluhannya Menggunakan Metode Clustering Pada PDAM Langkat. ALGORITMA: Jurnal Ilmu Komputer Dan Informatika, 6(1), 112–129.

Arhami, M., & Nasir, M. (2020). Data Mining (R. Indah utami, Ed.; 1st ed.). cv andi offset.

Dewi, ratna. (2023). Aplikasi Matlab untuk Simulasi Pengolahan Sinyal ( agus Prijono, Ed.; 1st ed.). Zahir Publishing.

Dwi Darmawan, S., Agushinta, D. R., Pascasarjana Magister Sistem Informasi, P., Informasi, S., & Ilmu Komputer dan Teknologi Informasi, F. (2022). Penerapan Algoritma K-Means Clustering Studi Kasus: Data Keluhan Pelanggan PT. PLN (Persero). Journal of Information System, Applied, Management, Accounting and Research, 6(2), 327–340. https://doi.org/10.52362/jisamar.v6i2.761

Efori Buulolo, S. Kom. , M. Kom. (2020). Data Mining (1st ed.). CV Budi Utama

Fajar Batubara, I., & Zibran Lubis, F. (2023). Clustering Data Pelanggan Pln Helvetia Menggunakan Metode K-Means Cluster. Jurnal Multidisiplin Saintek, 2(1), 71–80. https://ejournal.warunayama.org/kohesi

Hamzah, A. (2024). PERDA_NO_1_TAHUN_2024.

Hermansyah, Yamin, A., & Suparman. (2023). Meningkatkan Kualitas Layanan Publik di Pelabuhan : Peran Responsivitas dan Kemampuan Pelayanan Pegawai (F. Ayunindya, Ed.; 1st ed., Vol. 1). CV. Jakad Media Publishing.

Humagi, F., Ingetid L Moniaga, & Prijadi, R. (2021). Analisis Kebutuhan Prasarana Dan Sarana Pariwisata Di Kecamatan Kaidipang Kabupaten Bolaang Mongondow Utara. Jurnal Spasial, 8(1), 190–200.

Natalia Sianturi, R., Sihombing, M., Sihombing, A., Studi Sistem Informasi, P., Kaputama, S., Utara Jl Veteran No, S., Binjai Kota, K., Binjai, K., & Utara, S. (2023). Data Mining Grouping The Feasibility Of Applying For Credit To Customers Using The K-Means Algorithm Method On CV. Motorbike Choice. Journal of Mathematics and Technology (MATECH), 2(2).

Prasetyo. (2012). Data Mining Konsep dan Aplikasi menggunakan MATLAB (Nikodemus WK, Ed.; 1st ed., Vol. 1). ANDI OFFSET.

Putri, M. P., Barovih, G., Azdy, R. A., Yuniansyah, Saputra, A., Sriyeni, Y., Rini, A., & Admojo, F. T. (2022). Algoritma Dan Struktur Data (M. P. Putri, Ed.; 1st ed.). Widina.

Relita Buaton, Zarlis, M., Efendi, S., & Yasin, V. (2019). DATA MINING TIME SERIES (1st ed., Vol. 1). Wade Group.

Rofiqo, N., Windarto, A. P., & Hartama, D. (2018). Penerapan Clustering Pada Penduduk Yang Mempunyai Keluhan Kesehatan Dengan Datamining K-Means. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer) , 2(1), 216–223. http://ejurnal.stmik-budidarma.ac.id/index.php/komik

Rosiana, P. S., Apriliansyah Mohsa, A., Fadila, M. A., Jaman, J. H., Karawang, U. S., Ronggo Waluyo, J. H., & Timur, T. (2023). Visualisasi Data Tindak Kejahatan Berdasarkan Jenis Kriminalitas Di Kabupaten Karawang Dengan Menggunakan Algoritma Clustering K-Means. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3), 2830–7062. https://doi.org/10.23960/jitet.v11i3%20s1.3347

Saebani, B., A. (2022). Pengantar Antropologi, Bandung: CV Pustaka Setia, 137

Sasmita, & Muntari, S. (2023). Penerapan Algoritma K-Means Clustering Pada Data Keluhan Pelanggan Pt. Pln Persero Kota Pagar Alam. Jurnal Ilmiah Teknosains, 9(1), 8–12.

Sujayanti Br Giniting, N., Maulita, Y., & Ramadani, S. (2023). Pengelompokan Pasien Operasi Sesar Berdasarkan Indikasinya Mengunakan Metode Clustering. Journal of Engineering, Technology and Computing, 2(3), 165–174.

Wanto, A., Noor Hasan Siregar, M., Perdana Windarto, A., Hartama, D., Sri Rahayu Ginantra, N. luh wiwik, Napitupulu, D., Surya negara, E., Ridwan Lubis, M., Vita dewi, S., & Prianto Cahyo. (2020). DATA MINING ALGORITMA & IMPLEMENTASI (T. Limbong, Ed.; 1st ed.). Yayasan Kita Menulis.

Published

2024-08-29

How to Cite

Dea Syafitri, Yani Maulita, & Lina Arlianan Nur Kadim. (2024). Pengelompokan Data Keluhan Masyarakat Terhadap Fasilitas Umum diKota Binjai Menggunakan Metode Clustering. Jurnal Penelitian Teknologi Informasi Dan Sains, 2(3), 158–170. https://doi.org/10.54066/jptis.v2i3.2381