TOWR Stock Forecasting From 2021-2025 Using Machine Learning
DOI:
https://doi.org/10.54066/jptis.v3i1.3136Keywords:
Financial markets, Investment strategies, Machine learning, Prophet model, Stock price forecastingAbstract
Accurate stock price forecasting is a crucial yet challenging task due to the complex and dynamic nature of financial markets. This study employs the Prophet model to predict the stock prices of PT Sarana Menara Nusantara Tbk (TOWR) from 2021 to 2025. The research leverages historical stock data, incorporating dividend distribution dates and Annual General Meeting (AGM) events as external regressors to enhance predictive accuracy. The model was developed using machine learning-based time series forecasting, with hyperparameter tuning applied to optimize performance. The evaluation metrics indicate a Mean Absolute Error (MAE) of Rp49.92 and a Mean Absolute Percentage Error (MAPE) of 6.47%, demonstrating the model’s robustness in capturing long-term stock price trends. The findings suggest that stock prices exhibit significant movements around dividend announcement periods and AGM events, highlighting the impact of corporate actions on market behavior. This study reinforces the importance of incorporating fundamental financial indicators into forecasting models to improve decision-making for investors and financial analysts. The results offer practical implications for investment strategy formulation, risk management, and market trend analysis.
References
Ajiga, D. I., Adeleye, R. A., Tubokirifuruar, T. S., Bello, B. G., Ndubuisi, N. L., & Asuzu, O. F. (2024). Machine learning for stock market forecasting: A review of models and accuracy. Finance & Accounting Research Journal, 6(2). Retrieved February 20, 2025, from https://www.fepbl.com/index.php/farj/article/view/783
Carta, S. M., Consoli, S., Piras, L., Podda, A. S., & Recupero, D. R. (2024). Explainable machine learning exploiting news and domain-specific lexicon for stock market forecasting. IEEE Access, 9(1). Retrieved February 20, 2025, from https://ieeexplore.ieee.org/abstract/document/9355141/
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
Chandra, C., & Budi, S. (2020). Analisis komparatif ARIMA dan Prophet dengan studi kasus dataset pendaftaran mahasiswa baru. Jurnal Teknik Informatika dan Sistem Informasi, 6(2).
Hamdani, A. F., Swanjaya, D., & Helilintar, R. (2023). Facebook Prophet model with Bayesian optimization for USD Index prediction. Jurnal Nasional UMP, 293–300.
Hermawan, A., Aditama, F., Ramadhani, L. R., Ilham, N. M., Saputra, A., & Jayanti, N. R. (2024). Analisis segmentasi pelanggan berbasis RFM dan evaluasi efektivitas kampanye pemasaran untuk meningkatkan retensi. Neptunus, 2(4). https://doi.org/10.61132/neptunus.v2i4.400
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). OTexts. https://otexts.com/fpp2/
Jaquart, P., Dann, D., & Weinhardt, C. (2021). Short-term Bitcoin market prediction via machine learning. The Journal of Finance and Data Science, 7(1). Retrieved February 20, 2025, from https://www.sciencedirect.com/science/article/pii/S2405918821000027
Joshi, A., & Mayur, M. (2017). Impact of dividend announcements on stock prices: An analysis of some select sectors. International Journal of Advanced Research in Management and Social Sciences, 6(10), 72-83.
Kaninde, S., Mahajan, M., Janghale, A., & Joshi, B. (2022). Stock price prediction using Facebook Prophet. ITM Web of Conferences, 44, 03060.
Korganbekova, A. (2018). The impact of dividend announcements on stock prices: Evidence from the U.S. banking sector. Central European University, Master's Thesis.
Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197(1). Retrieved February 2025, from https://www.sciencedirect.com/science/article/pii/S0957417422001452
Lin, C. Y., & Marques, J. A. (2024). Stock market prediction using artificial intelligence: A systematic review of systematic reviews. Social Sciences & Humanities Open, 9(1). Retrieved February 20, 2025, from https://www.sciencedirect.com/science/article/pii/S2590291124000615
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2018). Forecasting: Methods and applications (5th ed.). Wiley.
Napitupulu, H., Sambas, A., Murniati, A., & Kusumaningtyas, V. A. (2022). Artificial neural network-based machine learning approach to stock market prediction model on the Indonesia Stock Exchange during the COVID-19. Engineering Letters, 30(3). Retrieved February 20, 2025, from https://www.researchgate.net/profile/Aceng-Sambas/publication/362983602_Artificial_Neural_Network-Based_Machine_Learning_Approach_to_Stock_Market_Prediction_Model_on_the_Indonesia_Stock_Exchange_During_the_COVID-19
PT Sarana Menara Nusantara Tbk. (2024). Company financial reports and stock performance data. Yahoo Finance. Retrieved from https://finance.yahoo.com/quote/TOWR.JK/
Shinde, S. K., & Gawali, D. H. (2018). Stock price prediction using Facebook Prophet. International Journal of Computer Applications, 182(21), 32-37. https://doi.org/10.5120/ijca2018917985
Soni, P., Tewari, Y., & Krishnan, D. (2022). Machine learning approaches in stock price prediction: A systematic review. Journal of Physics: Conference Series, 2161(1). Retrieved February 20, 2022, from https://iopscience.iop.org/article/10.1088/1742-6596/2161/1/012065/meta
Taylor, S. J., & Letham, B. (2017). Forecasting at scale. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3190v2
VanBerlo, B., Ross, M. A. S., & Hsia, D. (2021). Univariate long-term municipal water demand forecasting. arXiv preprint arXiv:2105.08486. https://arxiv.org/abs/2105.08486
Wibowo, F. D., Dang, T. T., & Wang, C. N. (2022). Forecasting Indonesia stock price using time series analysis and machine learning in R. Indonesian Scholars Scientific Summit Taiwan Proceeding, 4(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Penelitian Teknologi Informasi dan Sains

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.