Optimasi Fitur Seleksi Random Forest Menggunakan GA Dalam Klasifikasi Data Penyakit Gagal Jantung
DOI:
https://doi.org/10.54066/jptis.v1i2.323Keywords:
Random Forest algorithm, datamining, heart failure, rapidminerAbstract
Diseases of the heart and blood vessels, such as coronary artery disease (heart attack), cerebrovascular disease (stroke), heart failure (HF), and other pathologies, are collectively referred to as cardiovascular disease (CVD). Globally, around 17 million people a year die from cardiovascular disease, with mortality increasing significantly for the first time in 50 years. Has performed an analysis of the performance of the selection algorithm with case studies predicting the determination of the customer's risk profile. Data mining is the extraction of previously unknown or previously hidden patterns from large databases or data warehouses. This study compares data mining classification models Nave Bayes, Decision Tree, Random Forest, KNN, and SVM to find the most effective model for classifying customer profile data. Later, the most accurate model will be proposed as a replacement model for forecasting the customer's risk profile. As a result, the accuracy value obtained is 82.93% and AUC is 0.896. Then accuracy testing is carried out using the rapidminer application. Testing on rapidminer was carried out with the highest accuracy obtained with an accuracy value of 86.64% and an AUC of 0.880.
References
D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med Inform Decis Mak, vol. 20, no. 1, pp. 1–16, 2020.
N. A. Widiastuti, S. Santosa, and C. Supriyanto, “Algoritma Klasifikasi data mining naïve bayes berbasis Particle Swarm Optimization untuk deteksi penyakit jantung,” Pseudocode, vol. 1, no. 1, pp. 11–14, 2014.
G. D. Lopaschuk, Q. G. Karwi, R. Tian, A. R. Wende, and E. D. Abel, “Cardiac Energy Metabolism in Heart Failure,” Circ Res, vol. 128, no. 10, pp. 1487–1513, May 2021, doi: 10.1161/CIRCRESAHA.121.318241.
Z. S. Ageed et al., “Comprehensive survey of big data mining approaches in cloud systems,” Qubahan Academic Journal, vol. 1, no. 2, pp. 29–38, 2021.
W. Haoxiang and S. Smys, “Big data analysis and perturbation using data mining algorithm,” Journal of Soft Computing Paradigm (JSCP), vol. 3, no. 01, pp. 19–28, 2021.
R. Rastogi and M. Bansal, “Diabetes prediction model using data mining techniques,” Measurement: Sensors, vol. 25, p. 100605, 2023.
R. E. Putri, S. Suparti, and R. Rahmawati, “Perbandingan Metode Klasifikasi Naive Bayes dan k-Nearest Neighbor Pada Analisis Data Status Kerja Di Kabupaten Demak Tahun 2012,” jurnal gaussian, vol. 3, no. 4, pp. 831–838, 2014.
J. Jaya Purnama and S. Rahayu, “KLASIFIKASI KONSUMSI ENERGI INDUSTRI BAJA MENGGUNAKAN TEKNIK DATA MINING,” 2022. [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A guide to machine learning for biologists.”
A. Arifyan, “Analisis Perbandingan Optimasi berbasis Evolutionary pada Algoritma Klasifikasi Penentuan Profile Resiko Nasabah,” Techno. Com, vol. 21, no. 3, pp. 565–578, 2022.
A. Fauzi and T. Tukiyat, “ANALISIS POTENSI DANA RETAIL PADA NASABAH PT. BANK TABUNGAN NEGARA (PERSERO) TBK DENGAN METODE DECISION TREE DAN NAIVE BAYES BERBASIS OPTIMIZE SELECTION (EVOLUTIONARY (STUDY KASUS: PT. BANK TABUNGAN NEGARA KANTOR KAS SEASON CITY),” Jurnal Administrasi dan Manajemen, vol. 9, no. 1, pp. 30–36, 2019.
S. Muryani and D. Safika, “Rancang Bangun Aplikasi Pemesanan Pada Cantika Catering Berbasis Web,” Jurnal Teknik Komputer, vol. 5, no. 2, 2019.
T. Arifin and A. Herliana, “Optimasi metode klasifikasi dengan menggunakan particle swarm optimization untuk identifikasi penyakit diabetes retinopathy,” Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 2, pp. 77–81, 2018.
S. Busono, “Optimasi Naive Bayes Menggunakan Algoritma Genetika Sebagai Seleksi Fitur Untuk Memprediksi Performa Siswa,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 14, no. 1, pp. 31–40, 2020.
S. Han and L. Xiao, “An improved adaptive genetic algorithm,” SHS Web of Conferences, vol. 140, p. 01044, 2022, doi: 10.1051/shsconf/202214001044.
S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 2, pp. 310–320, 2020.
N. Qomariah, “Sentiment Analysis on Coffee Consumer Perceptions on Social Media Twitter Using Multinomial Naïve Bayes,” Journal of Intelligent Computing and Health Informatics (JICHI), vol. 2, no. 1, pp. 6–11, 2021.
A. E. Eiben and J. E. Smith, “What is an evolutionary algorithm?,” in Introduction to evolutionary computing, Springer, 2015, pp. 25–48.