Pemanfaatan AI dalam Analisis Isi Digital : Studi Kasus Komentar Media Sosial

Authors

  • Olih Solihin Universitas Komputer Indonesia
  • Dwi Firmansyah Universitas Mercubuana
  • Ahmad Zakki Abdullah Universitas Pembangunan Nasional Veteran Jakarta
  • Ahmad Prawira Dhahiyat Universitas Padjadjaran

DOI:

https://doi.org/10.54066/jupendis.v3i2.3141

Keywords:

Artificial, Intelligence, Digital, Content, Analysis

Abstract

In the digital era, social media has become a primary source of public opinion data that can be analyzed using artificial intelligence (AI). The utilization of AI, particularly in digital content analysis, enables researchers to extract information from social media comments more efficiently than conventional methods. This study aims to explore how AI is used in digital content analysis to understand communication patterns, sentiment, and discourse development on social media. The research employs a systematic analysis based on the PRISMA approach, filtering literature from academic databases such as Scopus, Web of Science, and Google Scholar. Additionally, this study analyzes social media comments using AI-based software, such as NVivo and other NLP tools. The findings reveal that AI enhances efficiency and accuracy in sentiment analysis, reduces subjective bias, and enables deeper insights into public opinion. However, key challenges identified include dataset bias and the interpretability of AI models. Therefore, the combination of Explainable AI and a multimodal approach in the future is expected to improve the effectiveness of AI-based sentiment analysis in digital communication.

References

Babu, N. V., & Kanaga, E. G. M. (2022). Sentiment analysis in social media data for depression detection using artificial intelligence: A review. SN Computer Science, 3(1), 1–20. https://doi.org/10.1007/s42979-021-00958-1

Brown, O., Smith, L. G. E., Davidson, B. I., & Ellis, D. A. (2022). The problem with the internet: An affordance-based approach for psychological research on networked technologies. Acta Psychologica, 228, 103650.

Buhas, V., Ponomarenko, I., Kazak, O., & Korshun, N. (2024). AI-driven sentiment analysis in social media content. Digital Economy Concepts and Technologies Workshop 2024, 3665, 12–21.

Das, R., & Singh, T. D. (2023). Multimodal sentiment analysis: A survey of methods, trends, and challenges. ACM Computing Surveys, 55(13s), 1–38.

Diwali, A., Saeedi, K., Dashtipour, K., Gogate, M., Cambria, E., & Hussain, A. (2023). Sentiment analysis meets explainable artificial intelligence: A survey on explainable sentiment analysis. IEEE Transactions on Affective Computing.

Gan, L., Li, J., Zhang, T., Li, X., Meng, Y., Wu, F., Yang, Y., Guo, S., & Fan, C. (2021). Triggerless backdoor attack for NLP tasks with clean labels. ArXiv Preprint ArXiv:2111.07970.

Krugmann, J. O., & Hartmann, J. (2024). Sentiment analysis in the age of generative AI. Customer Needs and Solutions, 11(1), 3.

Lalwani, T., Bhalotia, S., Pal, A., Rathod, V., & Bisen, S. (2018). Implementation of a chatbot system using AI and NLP. International Journal of Innovative Research in Computer Science & Technology (IJIRCST), 6(3).

Lu, Q., Sun, X., Long, Y., Gao, Z., Feng, J., & Sun, T. (2023). Sentiment analysis: Comprehensive reviews, recent advances, and open challenges. IEEE Transactions on Neural Networks and Learning Systems.

Safitri, I., Wulandari, O., Ardhana, I. A., Masithoh, A. D., & Aprilianto, M. A. (2024). From tradition to tech: The cultural evolution of student learning in the era of artificial intelligence sophistication. Journal of Education Research, 5(1), 504–512.

Saputra, H. N., Rahmat, R., & Komalasari, K. (2024). Pemanfaatan artificial intelligence pada pelajaran pendidikan Pancasila berbasis projek di SMP Daarut Tauhiid Boarding School. Sanskara Pendidikan Dan Pengajaran, 2(02), 115–125.

Setiawati, P. A., Suarjaya, I. M. A. D., & Trisna, I. N. P. (2024). Sentiment analysis of unemployment in Indonesia during and post COVID-19 on X (Twitter) using Naïve Bayes and Support Vector Machine. Journal of Information Systems and Informatics, 6(2), 662–675.

Solihin, O. (2021). Implementasi big data pada sosial media sebagai strategi komunikasi krisis pemerintah. Jurnal Common, 5(1). https://doi.org/10.34010/common

Solihin, O., Ruli, M., & Siregar, B. (2023). Transformasi budaya digital: Interaksi komunikasi interpersonal penjual dan pembeli. Budaya digital telah mengubah berbagai aspek kehidupan kita, 29, 1–8.

Taherdoost, H., & Madanchian, M. (2023). Artificial intelligence and sentiment analysis: A review in competitive research. Computers, 12(2), 37.

Tri Sakti, A. M., Mohamad, E., & Azlan, A. A. (2021). Mining of opinions on COVID-19 large-scale social restrictions in Indonesia: Public sentiment and emotion analysis on online media. Journal of Medical Internet Research, 23(8), e28249.

Xu, Q. A., Chang, V., & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal, 3, 100073.

Downloads

Published

2025-03-14

How to Cite

Olih Solihin, Dwi Firmansyah, Ahmad Zakki Abdullah, & Ahmad Prawira Dhahiyat. (2025). Pemanfaatan AI dalam Analisis Isi Digital : Studi Kasus Komentar Media Sosial. JURNAL PENDIDIKAN DAN ILMU SOSIAL (JUPENDIS), 3(2), 117–129. https://doi.org/10.54066/jupendis.v3i2.3141