Implementasi Model Machine Learning dalam Mengklasifikasi Kualitas Air

Authors

  • Stacyana Jesika Universitas Negeri Medan
  • Suci Ramadhani Universitas Negeri Medan
  • Yohanna Permata Putri Universitas Negeri Medan

DOI:

https://doi.org/10.54066/jikma.v1i6.1162

Keywords:

Classification, K-NN, SVM, Water Quality

Abstract

Water quality is an important factor in maintaining human health and environmental sustainability. Water pollution is a major problem in Indonesia, so it is important to monitor and classify water quality effectively. Implementation of machine learning models in classifying water quality can provide important benefits in the environmental and health fields. This research uses two machine learning algorithms, namely KNN and SVM, to classify water quality. The water quality data used comes from the website www.kaggle.com, which was uploaded by MsSmartyPants in 2021 with the title "Water Quality (Dataset for water quality classification)". Implementation of this machine learning model involves the steps of data collection, data pre-processing, selection of relevant attributes, algorithm selection, model training, evaluation, and model implementation for real-time water quality classification.

References

Bachtiar, F., Syahputra, I., & Wicaksono, S. (2019). PERBANDINGAN ALGORITME MACHINE LEARNING UNTUK MEMPREDIKSI PENGAMBIL MATA KULIAH. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 6(5), 543–548. https://doi.org/10.25126/jtiik.2019611755

Han, J., Kamber, M., & Pei, J. (2012). Techniques to Improve Classification Accuracy. In Data Mining, Concepts and Techniques.

Maulida, A. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. 1(2), 29–33.

McCartney, P. R. (2015). Big Data Science. In MCN The American Journal of Maternal/Child Nursing (Vol. 40, Nomor 2). https://doi.org/10.1097/NMC.0000000000000118

Mutrofin, S., Izzah, A., Kurniawardhani, A., & Masrur, M. (2014). OPTIMASI TEKNIK KLASIFIKASI MODIFIED K NEAREST NEIGHBOR MENGGUNAKAN ALGORITMA GENETIKA. GAMMA, 10, Nomor(September), 130–134. https://doi.org/10.1017/9781316534946.021

Said, H., Matondang, N. H., & Irmanda, H. N. (2022). Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kualitas Air Yang Dapat Dikonsumsi. Techno.Com, 21(2), 256–267. https://doi.org/10.33633/tc.v21i2.5901

Savitri, L., & Nursalim, R. (2023). Klasifikasi Kualitas Air Minum menggunakan Penerapan Algoritma Machine Learning dengan Pendekatan Supervised Learning. Diophantine Journal of Mathematics and Its Applications, 2(01), 30–36. https://doi.org/10.33369/diophantine.v2i01.28260

Suyanto, D. (2017). Data Mining Untuk Klasifikasi dan Klastering Data. Informatika Bandung.

Downloads

Published

2023-11-24

How to Cite

Stacyana Jesika, Suci Ramadhani, & Yohanna Permata Putri. (2023). Implementasi Model Machine Learning dalam Mengklasifikasi Kualitas Air. Jurnal Ilmiah Dan Karya Mahasiswa, 1(6), 382–396. https://doi.org/10.54066/jikma.v1i6.1162