Sistem Pendeteksi Kecepatan Kendaraan dengan Menggunakan Metode Deep Learning

Authors

  • Samuel Anaya Zai Universitas Negeri Medan
  • Sindy Fitriani Margaret Universitas Negeri Medan
  • Yohanna Permata Putri Universitas Negeri Medan

DOI:

https://doi.org/10.54066/jikma.v1i6.1163

Keywords:

OpenCV, detection, vehicle, Correlation Tracker

Abstract

Object detection based on digital image processing in vehicles is important to be applied in building surveillance systems or as an alternative method of collecting statistical data for effective technical decision making in traffic engineering. This review describes the implementation of vehicle speed detection and measurement using OpenCV. This method involves the use of a cascade classifier to detect cars and a dlib correlation tracker to track objects in traffic video footage. Car detection is performed on each image using a Cascade Classifier, while object tracking uses a correlation tracker to track the location and identity of the vehicle. Each time the position changes between images, the program calculates the car's speed based on the difference in position. Speed ​​is measured in kilometers per hour and is displayed above each passing vehicle. Experimental results demonstrate the program's success in effectively detecting and tracking vehicles, providing clear and accurate visualization of vehicle movement and speed. The program is also capable of measuring performance in frames per second (fps). The conclusions of this journal highlight the potential for further development, optimization, and maintenance as measures to improve system performance in various contexts of use. This journal contributes to the literature in the field of automated traffic monitoring and can be a useful reference for developers of security monitoring and traffic management systems.

References

Amriza, Rona Nisa Sofia, and Didi Supriyadi. 2021. “Komparasi Metode Machine Learning Dan Deep Learning Untuk Deteksi Emosi Pada Text Di Sosial Media.” Jurnal JUPITER 13(2):130–39.

Ariyoga, Dimas, Ridho Rahmadi, and Rian Adam Rajagede. 2021. “Penelitian Terkini Tentang Sistem Pendeteksi Pelanggaran Lalu Lintas Berbasis Deep Learning: Sebuah Kajian Pustaka.” Prosiding Automata.

Carlos, Frins, Lestari Margatama, and Indra Riyanto. 2021. “Perancangan Sistem Deteksi Kecepatan Kendaraan Dengan Metode Optical Flow.” Jurnal Ticom: Technology of Information and Communication 10(1):56–63.

Dompeipen, Tresya Anjali, and Sherwin R. U. .. Sompie. 2020. “Penerapan Computer Vision Untuk Pendeteksian Dan Penghitung Jumlah Manusia.” Jurnal Teknik Informatika 15(4):1–12.

Julianto, Eko Nugroho. 2010. “Hubungan Antara Kecepatan, Volume Dan Kepadatan Lalu Lintas Ruas Jalan Siliwangi Semarang.” Jurnal Teknik Sipil & Perencanaan 12(2):151–60.

Marpaung, Faridawaty, Fitrahuda Aulia, and Rinjani Cyra Nabila. 2022. Computer Vision Dan Pengolahan Citra Digital.

Mustaqim, M. Fazal, Anan Nugroho, Dan Alfa, and Faridh Suni. 2021. “Sistem Deteksi Kecepatan Kendaraan Menggunakan Metode Haar Cascade Untuk Keamanan Berkendara.” Edu Elektrika Journal 10(2):30–34.

Nurhidayah, Dani, Rais, and Hepatika Zidny Ilmadina. 2021. “Rancang Bangun Sistem Deteksi Kecepatan Kendaraan Berbasis Computer Vision.”

Zulfikri, Muhammad, Kurniawan Abd. Latif, Hairani Hairani, Ahmad Ahmad, Rifqi Hammad, and Moch. Syahrir. 2021. “Deteksi Dan Estimasi Kecepatan Kendaraan Dalam Sistem Pengawasan Lalu Lintas Menggunakan Pengolahan Citra.” Techno.Com 20(3):455–67. doi: 10.33633/tc.v20i3.4588.

Downloads

Published

2023-11-24

How to Cite

Samuel Anaya Zai, Sindy Fitriani Margaret, & Yohanna Permata Putri. (2023). Sistem Pendeteksi Kecepatan Kendaraan dengan Menggunakan Metode Deep Learning. Jurnal Ilmiah Dan Karya Mahasiswa, 1(6), 397–406. https://doi.org/10.54066/jikma.v1i6.1163