Klasifikasi Data Mining Prediksi Penjualan dengan Metode Appriori
Studi Kasus: Toko Agu Ate
DOI:
https://doi.org/10.54066/jptis.v2i3.2405Keywords:
Sentiment, Agu Ate, Appriori MetodeAbstract
Abstract Databases stored on storage media are rarely used by most of their users and even within a certain period of time the data is deleted because it is considered trash and only fills up the storage media. This assumption is not entirely true, because in fact a large database can provide the information needed for various interests, both for business interests in making decisions and for science and research. The development of information and communication technology in this era often called the millennial, information and communication technology is also increasingly advanced and developing and cannot be avoided. Where the development and progress of information and communication technology is growing very rapidly, such as the need for data processing which is increasing every day and if left alone, the data will be useless. By using the Text Mining technique, the classification method, a sentiment will be known to be positive, neutral or negative. One of the algorithms widely used in sentiment analysis is the Naïve Bayes classification method. This study uses the Naïve Bayes Classifier (NBC) method with tf-idf weighting accompanied by the addition of an emotion icon conversion feature (emoticon) to determine the existing sentiment class from tweets about Agu Ate Store. The results of the study show that the Naïve Bayes method without additional features is able to classify sentiment with an accuracy value of 96.44%, while if the tf-idf weighting feature is added along with the emotion icon conversion, the accuracy value can be increased to 98%.
References
Mukti, R. A. (2021). Sistem Informasi Jurnal Elektronik Berbasis Web Pada Universitas Diponegoro. Jurnal Teknoinfo, 15(1), 38. https://doi.org/10.33365/jti.v15i1.473
Nasution, L. H., & Aliwijaya, A. (2023). Strategi Preservasi Digital Tradisi Lisan Makkobar dalam Upacara Perkawinan Adat Mandailing ( Studi Kasus di Kota Padangsidimpuan ) Abstrak Pendahuluan Literasi tidak hanya sekedar membaca dan menulis . Beberapa ilmuwan mengartikan seperangkat keterampila. c.
Purnamasari, A. I., & Ali, I. (2024). Analisis Sentimen Komentar Berita Detik . Com Menggunakan Algoritma Suport Vektor Machine ( Svm ). 8(3), 3175–3181.
Pustaka, T. (2024). Implementasi Long Short-Term Memory Dalam Analisis Sentimen Pengguna Aplikasi Twitter Yang Mengandung Ujaran Kebencian. 8(3), 3170–3174.
Trisnawati, W., & Wibowo, A. (2024). SENTIMENT ANALYSIS OF ICT Service User Using Naive Bayes Classifier And Svm Methods With Tf-Idf Text Weighting Analisis Sentimen Pengguna Layanan Tik Menggunakan Metode Naive Bayes Classifier Dan Svm Dengan Pembobotan Teks Tf-Idf. 5(3), 709–719.
Wahyudin, Y., & Rahayu, D. N. (2020). Analisis Metode Pengembangan Sistem Informasi Berbasis Website: A Literatur Review. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 15(3), 26–40. https://doi.org/10.35969/interkom.v15i3.74
Winoto, D., Aditia, V. D., Sorisa, C., Priskila, R., & Pranatawijaya, V. H. (2024). Analisis Sentimen Pada Ulasan Pengguna Terhadap Aplikasi Pembelajaran Bahasa Duolingo : Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor. 8(3), 3230–3236.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Penelitian Teknologi Informasi dan Sains
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.