Analysis of Profit Results From The Use of Plts (Solar Power Plant) in Lolo Wano Village Using the Naive – Bayes Classifier Method
DOI:
https://doi.org/10.54066/jptis.v2i3.2433Keywords:
Sentiment, Naïve Bayes, PLTSAbstract
The newest renewable energy source in the world and one of the most reasonably priced is solar energy. Because solar energy has so many benefits all year round, it can be a cost-effective energy source when used, especially since it is so abundant globally. to produce electricity by converting sun energy. The equator-based nation of Indonesia boasts an abundance of solar energy resources, with an average daily solar radiation intensity of about 4.8 kwh/m2. However, there is an abundance of solar-based energy sources that can be utilized. Especially in Lolo Wano Village, where the intensity of solar radiation is quite high, it is an option to develop a Solar Power Plant (PLTS) as a solution to electrical energy needs. In order to specifically identify the class of unknown object labels, classification techniques are employed since they are able to identify models that distinguish between different data classes or data ideas. In the meantime, the Naïve Bayes algorithm takes into account multiple factors that will influence a decision's final result in order to forecast future opportunities based on data that has already been collected. The information utilized comes from observations made by the LOLO WANO VILLAGE PLTS Community (PLTS). The data gathered from the satisfaction survey will be divided into two categories: training data and testing data. The testing data's accuracy will be evaluated using the output of the training data model. The classification findings demonstrate that, with the maximum level of accuracy at 87.50%, the Naïve Bayes algorithm is appropriate for gauging student satisfaction with online learning.
References
Mukti, R. A. (2021). Sistem informasi jurnal elektronik berbasis web pada Universitas Diponegoro. Jurnal Teknoinfo, 15(1), 38. https://doi.org/10.33365/jti.v15i1.473
Nasution, L. H., & Aliwijaya, A. (2023). Strategi preservasi digital tradisi lisan Makkobar dalam upacara perkawinan adat Mandailing (Studi kasus di Kota Padangsidimpuan). Abstrak Pendahuluan Literasi tidak hanya sekedar membaca dan menulis.
Purnamasari, A. I., & Ali, I. (2024). Analisis sentimen komentar berita Detik.com menggunakan algoritma suport vektor machine (SVM). Jurnal Teknik Informatika, 8(3), 3175–3181.
Pustaka, T. (2024). Implementasi long short-term memory dalam analisis sentimen pengguna aplikasi Twitter yang mengandung ujaran kebencian. Jurnal Teknik Informatika, 8(3), 3170–3174.
Trisnawati, W., & Wibowo, A. (2024). Sentiment analysis of ICT service user using Naive Bayes classifier and SVM methods with TF-IDF text weighting. Jurnal Teknik Informatika, 5(3), 709–719.
Wahyudin, Y., & Rahayu, D. N. (2020). Analisis metode pengembangan sistem informasi berbasis website: A literature review. Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 15(3), 26–40. https://doi.org/10.35969/interkom.v15i3.74
Winoto, D., Aditia, V. D., Sorisa, C., Priskila, R., & Pranatawijaya, V. H. (2024). Analisis sentimen pada ulasan pengguna terhadap aplikasi pembelajaran bahasa Duolingo: Menggunakan algoritma Naïve Bayes dan K-Nearest Neighbor. Jurnal Teknik Informatika, 8(3), 3230–3236.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Penelitian Teknologi Informasi dan Sains
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.